A SECOND PATHWAY LEADING TO ANTHRAOUINONES IN HIGHER PLANTS*

E. LEISTNER

Institut fur Pflanzenphysiologie der Ruhr Universitat Bochum, West Germany

(Received 19 January 1971)

Abstract—The biosynthesis of chrysophanol (1,8-dihydroxy-3-methylanthraquinone) and emodin (1,6,8-trihydroxy-3-methylanthraquinone) has been studied in *Rhamnus frangula* and *Rumex alpinus*. Degradation of both anthraquinones after feeding 1-¹⁴C-acetate and 2-¹⁴C-acetate showed that these compounds are derived from acetate by linear combination. ¹⁴C-Shikimate and ¹⁴C-mevalonate were not incorporated.

INTRODUCTION

ALIZARIN (I) and purpurincarboxylic acid (II) are anthraquinones which are not hydroxylated in ring A. They occur in *Rubia tinctorum*,¹ a higher plant. Biosynthetically these anthraquinones are derived from shikimate² and mevalonate.^{3,4} Chrysophanol (III) and emodin (IV) are hydroxylated in ring A and occur not only in higher plants but also in fungi.¹ Fungi are known to form these anthraquinones by linear combination of acetate.⁵ It has been reported, however, that in higher plants chrysophanol arises from mevalonate and shikimate ⁶

We have reinvestigated the biosynthesis of these anthraquinones in higher plants. Our results show that higher plants contain two distinct pathways for anthraquinone-biosynthesis.

SCHEME I. TWO TYPES OF ANTHRAOUINONES OCCURRING IN HIGHER PLANTS.

RESULTS

Radioactively labelled potential precursors were administered to intact plants or cuttings (roots, leaves, etc.) (Tables 1 and 2), of four plant species known to contain emodin and chrysophanol. In each case, the plant material was extracted and the anthraquinones purified to constant specific activity by thin-layer and paper-chromatography (Table 3).

In Table 2, experiments are listed which were conducted in order to confirm the reported precursor-product relationship between shikimate or mevalonate and chrysophanol.⁶ Leaves and roots of *Rheum* and *Rumex* (Polygonaceae) as well as branches of *Rhamnus* (Rhamnaceae) were incubated with ¹⁴C-labelled precursors by various techniques. However,

- * A preliminary account of part of this work has been published: E. Leistner and M. H. Zenk, *Chem. Commun.* 210 (1969).
- ¹ R. H. Thomson, Naturally Occurring Quinones, Butterworths, London (1957).
- ² E. Leistner and M. H. Zenk, Z. Naturforsch 22b, 865 (1967).
- ³ E. Leistner and M. H. Zenk, Tetrahedron Letters 1395 (1968).
- ⁴ A. R. Burnett and R. H. Thomson, Chem. Commun. 1125 (1967).
- ⁵ R. H. Thomson, in *Chemistry and Biochemistry of Plant Pigments* (edited by T. W. Goodwin), p. 309, Academic Press, London (1965).
- ⁶ A. MEYNAUD, A. VILLE and H. PACHECO, Compt. Rend. 266D, 1783 (1968).

3016 E. Leistner

SCHEME II. DEGRADATION OF CHRYSOPHANOL.

in every case negligible incorporation of ¹⁴C-shikimate or ¹⁴C-mevalonate into emodin or chrysophanol was observed (Table 2). On the other hand 1-¹⁴C-acetate and 2-¹⁴C-acetate were well incorporated into emodin and chrysophanol in *Rhamnus frangula* and *Rumex alpinus* (Table 1). For example, incorporation of up to 0·35% was observed after feeding acetate 1-¹⁴C to *Rumex alpinus*, the emodin isolated had a specific activity of 857,000 dis/min/µM (Table 1).

Kuhn-Roth-oxidation⁷ of emodin and chrysophanol yielded acetic acid (Table 4) corresponding to C-3 and C-3' of the anthraquinones. The specific activity of acetic acid was shown to be slightly higher than the average specific activity of the C_2 units forming the anthraquinones (Table 4). As expected, either the carboxyl or the methyl-group of the Kuhn-Roth-acetate was radioactive after feeding, respectively, acetate-1 or $2^{-14}C$.

TADIE 1	RESULTS OF FEEDING	OF 14CO.	14C-ACETATE AND	14C-MALONATE TO	Rumex AND Rhamnus

Plant	Feeding technique	Feeding time (hr)		ecursor inistered μC/M	Anthraquinone Emodin(E) Chrysophanol(C)	Isolated μΜ	Spec. Activity dis/min/µM	Incorporation (%)
Rumex	Assimilation of ¹⁴ CO ₂	2	14(CO ₂				
alpinus	by leaves (3.2 g)				\boldsymbol{C}	7.16	1,300	
_	Excised leaves (2.9 g)		1-14C-	Acetate	C	0.99	235,400	0.06
	feeding in darkness	24	5.0	40.0	E	0.36	857,000	0.07
	Excised leaves (6 1 g)		2-14C-	Acetate	\boldsymbol{c}	3.01	161,100	0.22
	feeding in darkness	24	2.63	38.0	E	0.2	371,500	0 07
	Sliced roots (3.05 g)		2-14C-	Acetate			•	
	shaken in water (10 ml) with penicillin (0.5 g)	24	50-0	1.3	С	26.8	22 0	0 0004
Rhamnu:	Excised branches		1-14C-	Acetate	C	0.62	18,320	0 01
frangula	(12 g)	24	1.25	40.0	E	2.85	2,580	0 007
, , ,	Excised branches		2-14C-	Acetate	Č	2.48	125,000	0.352
	(15 g)	24	2.63	38-0	E	2.72	66,900	0.206
	Excised branches		2-14C-M	alonic acid	$\overline{\mathbf{c}}$	1.18	39,350	0.104
	(16 g)	24	1.65	12.1	Ē	1.78	57,980	0.232

Per cent incorporation is: total activity in the anthraquinone divided by total activity fed, \times 100.

⁷ R. Kuhn and H. Roth, Ber. 66, 1274 (1933).

Table 2. Results of Feeding of ¹⁴C-labelled precursors of alizarin to plant material containing A-ring hydroxylated anthraquinones

		Feeding time		ed compound ninistered	activi	poration of ty (%) into raquinones
Plant	Feeding technique	(hr)	μM	$\mu C/\mu M$	Emodin	Chrysophanol
Rheum	Excised leaves	1,	2-14C-DL-	Shikimic acid		
officinale	(1·2 g)	24	0.5	8∙7	0	0
	Leaf discs (1·2 g)	1.	2-14C-DL	Shikimic acid		
	shaken in water (20 ml)	25	0.62	8.7	0	
Rheum	Sliced roots (5.5 g)	1,	2-14C-DL-	Shikimic acid		
palmatum	` •	24	1.15	8.7	0	0
-	Intact excised root (9.1 g)	1,	2-14C-DL	Shikimic acid		
	fed through cut end	24	0.62	8.7	0	0
Rumex	Excised leaves	1,	2-14C-DL-	Shikimic acid		
alpinus	(3·0 g)	5.5	0.58	8.7	0.004	0.004
-	Excised leaves	2-	14C-DL-N	levalonic acid		
	(2·2 g)	25	2.0	5.03		0
Rhamnus	Excised branches	7-	14C-D-Sh	ikimic acid		
frangula	(18 g)	24	0.4	20	0.001	0.001
	Excised branches	2-	14C-DL-N	levalonic acid		
	(21 g)	24	2.11	4.8	0	0

In order to establish the labelling pattern of the whole chrysophanol molecule, a new degradation procedure was devised (Scheme II). Chrysophanol was oxidized by alkaline hydrogen peroxide solution yielding 3-hydroxyphthalic-acid (ring A) and 3-hydroxy-5-methylphthalic acid (ring C) which were separated chromatographically (Table 3). The ratio of the specific activities of ring A and ring C were 0.96 (theory < 1.0) after 1-14C-

TABLE 3. CHROMATOGRAPHIC SYSTEMS USED FOR THE PURIFICATION OF EMODIN AND CHRYSOPHANOL AND THEIR OXIDATION PRODUCTS

Support	Solvents,	v/v	Emodin	Chryso phanol	Rf-values 3-hydroxy- phthalic acid	3-Hydroxy-5- Methyl- phthalic acid
Silica Gel GF (Merck)	Benzene Ethyl formate Formic acid	75 24 1	0.58	0.87		
	Benzene Acetic acid	${8 \choose 2}$	0.74	0.92	0.50	0.53
	Chloroform Ethylacetate Formic acid	5 4 1	0.80	0.69		
	Toluene Ethyl formate Formic acid	5 4 1			0.40	0-42
Chromatography paper (Schleicher and Schüll 2045b)	Isopropanol Ammonia Water	${1 \atop 1}$	0-55	0.58	0.22	0.28
·	Formic acid Water	2 98			0.78	0.84

3018 E Leistner

	Radioactive	Isolated anthraquinone and specific activity (dis/min/µM)*	$(C_3 + 6)$	ic acid C ₃ ') spec /min/μ M)	spec	-COOH (C ₃) spec. act. dis/min/μM)	
Plant	substrate	≈ no.	Found	Calculated	Found	Calculated	
Rhamnus frangula	2-14C-Acetate	Emodin 200·0	33 5	> 25 0	2 2	0	
Rumex alpinus	2-14C-Acetate	Chrysophanol 191·5	28.4	> 23.9	1.2	0	
Rumex alpinus	1-14C-Acetate	Chrysophanol 122·5	19.0	> 17.5	17-2	17 5	

TABLE 4. KUHN-ROTH OXIDATIONS AND SCHMITT DEGRADATIONS OF ANTHRAQUINONES

acetate and 0.76 (theory < 0.8) after 2-14C-acetate feeding, indicating an equal distribution of the radioactivity from 14C-acetate in the chrysophanolmolecule (cf. Table 5).

Further degradation of ring A and ring C was conducted in a way which permitted determination of the specific activity of individual C-atoms. The main degradation products of chrysophanol are shown in Scheme II and Table 5 shows the results of the degradation. It can be seen that the label enters into alternate carbon atoms in the samples derived from each ¹⁴C-acetate feeding. In the sample obtained from the experiment with carboxyl-¹⁴C-acetate, C-atoms 6,8 and 11 contained 48·3% of the activity of the whole molecule (theory 42·8%), but only 3·3% (theory 0%) was present in these C-atoms after methyl-¹⁴C-acetate feeding. C-atoms 2, 4 and 13 amount for 2·2% activity (theory 0%) after carboxyl-¹⁴C-acetate feeding, but for 37·5% (theory 41·1%) after methyl-¹⁴C-acetate feeding.

DISCUSSION

Acetate is incorporated into alizarin⁸ as well as chrysophanol and emodin (Table 1). However, radioactivity from acetate enters only ring C and the keto-C-atoms of alizarin, whereas radioactivity from ¹⁴C-acetate is found to be equally distributed in chrysophanol (Table 5). This indicates a different mode of incorporation of ¹⁴C-acetate into structurally different types of anthraquinones. The labelling of alizarin after ¹⁴C-acetate-feeding can be

Table 5. Per cent distribution of radioactivity in chrysophanol after 1-14C and 2-14C-acetate feeding

2-14C-Acetate

1-14C-Acetate

	OH O 12 9 13 16 5 11 10 14	OH 12 3' CH ₃	OH O 13 13 13 15 10 14 0	OH 1 2 3 3 4 CH ₃
C-atoms	% Calculated	% Found	% Calculated	% Found
9	14.3	13.2	0	29
10	0	1.6	12.5	108
6, 8, 11	42 8	48 3	0	3 3
5, 7, 12	0	2.3	37.5	30 8
1, 3, 14, 3'	42.8	47-2	12.5	12 5
2, 4, 13	0	2.2	37.5	41.1

⁸ E. Leistner and M. H. Zenk, Tetrahedron Letters 475 (1967).

^{*} After dilution with carrier,

explained by the finding that ring C of this anthraquinone is derived from mevalonic acid⁹ which itself originates from acetate.

The alternate labelling of the chrysophanol molecule after 1-14C and 2-14C-acetate feeding strongly supports the view that acetate units are linked together by way of acetyl-CoA and malonyl-CoA. Cyclization of the polyketide unit most probably gives rise to an anthraquinone precursor which in several steps⁵ is transformed to chrysophanol.

As indicated in Table 4, specific activity at C-3 and C-3' of emodin and chrysophanol is slightly higher than one eighth (2-14C-acetate) or one-seventh (1-14C-acetate) of the total activity. This is consistent with a polyketide route¹⁰: C-atoms 3 and 3' are directly derived from the 'starter'-acetyl-CoA molecule, whereas the radioactivity enters the remaining carbon skeleton by way of the malonyl-CoA pool and is thus further diluted.

Although the data presented in Table 2 are only negative, they indicate but do not prove that ¹⁴C-shikimate and ¹⁴C-mevalonate are not precursors of chrysophanol and emodin. The reported incorporation of ¹⁴C-shikimate into chrysophanol⁶ in *Rheum rhaponthicum* was actually nonspecific since only 23% (expected 100%) of the activity of the whole molecule was found in hydroxyphthalic acid which represents ring A of chrysophanol,⁶ whereas, in alizarin the radioactivity was confined only to ring A after 1,2-¹⁴C-shikimate feeding.³ The possibility cannot be excluded that radioactivity from shikimic acid entered chrysophanol by way of phenylalanine and homogentisic acid. These are possibly catabolized to acetate which is now known to be an immediate precursor of chrysophanol.

A competition experiment which was designed by Meynaud et al.⁶ to prove that mevalonic acid is a precursor of chrysophanol adds further evidence to the suggestion¹¹ that competition experiments are not reliable in biosynthetic studies as long as their interpretation is based on incorporation rates only.

The strictly alternate labelling pattern of chrysophanol after 1-14C-and 2-14C-acetate-feeding, the results of the Kuhn-Roth-oxidations and the equal distribution of radioactivity can only be explained by a polyacetate route which operates in *Rumex* as well as *Rhamnus* to produce A-ring hydroxylated anthraquinones like emodin and chrysophanol.

EXPERIMENTAL

Plant material and feeding techniques. The plant material was obtained from the Botanical Garden, Munich, Germany. Leaves and roots of Rheum andbr anches of Rhamnus were taken from outdoors just prior to feeding. Rumex was grown in the greenhouse. Tracers fed to aerial parts of Polyganaeceae (Rheum, Rumex) were administered to young expanding leaves. Unless otherwise stated in Table 1 feedings were carried out under normal light conditions. Feeding techniques are given in Tables 1 and 2.

m ¹⁴C-Labelled compounds. 1-¹⁴C-Acetate, 2-¹⁴C-acetate, ²-¹⁴C-malonic acid, Ba¹⁴CO₃ and 2-¹⁴C-DL-evalonolactone were purchased from the Radiochemical Centre, Amersham, 1,2-¹⁴C-DL-shikimic acid from CEA-France. 7-¹⁴C-D-shikimic acid was synthesized by Dr. K. H. Scharf, of this laboratory, by a biochemical method.¹²

Isolation and purification of anthraquinones. After feeding 14 C-labelled compounds to Rheum or Rumex the plant material was macerated and refluxed for 1 hr in a mixture of conc. H_2SO_4 (1 ml) and acetone (100 ml). The extraction was repeated twice for shorter times and the filtered extracts combined. A threefold excess of H_2O was added and the anthraquinones extracted repeatedly into benzene. The combined benzene extracts were extracted with 5% KOH. The alkaline extract was acidified and the anthraquinones were extracted into Et_2O . The Et_2O was washed with $(NH_4)_2CO_3$ (5%) and H_2O and evaporated to dryness.

Incubated branches of *Rhamnus frangula* were peeled, the heartwood was broken into pieces and the leaves discarded. Cortex and heartwood were extracted repeatedly with boiling EtOH (80%). The extracts were

⁹ E. LEISTNER and M. H. ZENK, unpublished results.

¹⁰ A. J. BIRCH, Proc. Chem. Soc. 3 (1962).

¹¹ M. H. ZENK and E. LEISTNER, Z. Naturforsch. 22b, 460 (1967).

¹² K. H. SCHARF and M. H. ZENK, in preparation.

3020 E Leistner

evaporated, the residue dissolved in N H₂SO₄ and the solution heated to 100°. The anthraquinones were extracted into Et₂O and the Et₂O solution washed with (NH₄)₂CO₃ (5%) and H₂O, dried, and evaporated.

The anthraquinones were purified chromatographically (Table 3) and the concentration was determined spectrophotometrically after elution with ethanol. Chrysophanol, E_{434} nm = 6.75×10^6 cm²/mol; emodin E_{428} nm = 2.895×10^6 cm²/mol.

Degradation of chrysophanol to substituted phthalic acids. Purified ¹⁴C-chrysophanol was mixed with a solution of carrier material (50 mg) in MeOH. The solution was evaporated; the residue was taken up in N NaOH (12·5 ml). The chrysophanol was oxidized with H_2O_2 according to a procedure employed for the degradation of juglone. ¹³ After the reaction had been completed the mixture was acidified and the 3-hydroxyphthalic acid and 3-hydroxy-5-methylphthalic acid were extracted into Et₂O. The Et₂O was evaporated and the acids separated chromatographically (Table 3). The acids were eluted with EtOH (80%) and their concentrations were determined spectrophotometrically. 3-Hydroxyphthalic acid (E_{323} nm = 2·961 × 10⁶ cm²/mol), yield 2·9 mg, 8%; 3-Hydroxy-5-methylphthalic acid (E_{323} nm = 4 50 × 10⁶ cm²/mol) yield 3·7 mg, 9·5%.

Decarboxylation of phthalic acids. Degradation of 3-hydroxyphthalic acid (C-atoms 5-12 of chrysophanol) was carried out according to Gatenbeck.¹⁴ The acid was decarboxylated yielding C-atom 9 as BaCO₃. The *m*-hydroxybenzoic acid (C-atoms 5-8, 10-12) was nitrated and decarboxylated yielding C-atom 10 as BaCO₃. The resulting picric acid (C-atoms 5-8, 11 and 12) was submitted to bromopicrin-cleavage, bromopicrin representing C-atom 5, 7 and 12 and BaCO₃ representing C-atoms 6, 8 and 11 of chrysophanol.

3-Hydroxy-5-methylphthalic acid (3·7 mg) (ring C) was refluxed in 50% $\rm H_2SO_4$ (10 ml) for 25 min yielding 3-hydroxy-5-methylbenzoic acid (C-atoms 1-4, 10, 13, 14, 3'). The reaction mixture was diluted with $\rm H_2O$ and the organic acid extracted into $\rm Et_2O$. 3-Hydroxy-5-methylbenzoic acid was purified by paper chromatography (isopropanol-ammonia-water, 8:1:1, $R_f = 0.46$ and 2% formic acid, $R_f = 0.58$) The acid was eluted with EtOH (80%) and the concentration determined spectrophotometrically ($\rm E_{300}$ nm = $2.868 \times 10^6 \, \rm cm^2/mol$) yield 2·5 mg 72% The identity of the 3-hydroxy-5-methylbenzoic acid was checked by comparison with an authentic sample synthesized according to Meldrum and Perkin. UV-spectra and R_f -values in nine different solvent systems were identical.

Nitration and decarboxylation of 3-hydroxy-5-methylbenzoic acid. To the $^{14}\text{C-}3$ -hydroxy-5-methylbenzoic acid carrier (120 mg) was added and the acid dissolved in conc. H_2SO_4 (4·8 ml), the solution was chilled to 0° and cold 68% HNO₃ (4 ml) added dropwise. The mixture was stirred at room temp. for 2 hr and the collected precipitate washed (H_2O at 0°). The yield of 3-hydroxy-5-methyl-2,4,6-trinitrobenzoic acid was 90 mg, 40%; mp. 191° (Lit. 180°). The product was chromatographically homogenous (Found: C, 33·38, H, 1·88; N, 14·43; O, 50·16. Calc. for $\text{C}_8\text{H}_5\text{N}_3\text{O}_9$. C, 33·45; H, 1·75; N, 14·60; O, 50·2%.) 3-Hydroxy-5-methyl-2,4,6-trinitrobenzoic acid (C-atoms 1-4, 10, 13, 14 and 3′) (90 mg) was decarboxylated by refluxing in glycerol (5 ml) for 25 min. The liberated CO₂ representing C-atom 10 of chrysophanol was flushed with N₂ into a receiving vessel containing Ba(OH)₂ (5 ml) BaCO₃ yield 58 mg, 94%. The reaction mixture was diluted with a fourfold excess of H₂O and acidified. The 2,4,6-trinitro-*m*-cresol was extracted into Et₂O. The Et₂O was evaporated and the residue crystallized from H₂SO₄ (2N) The yield of 2,4,6-trinitro-*m*-cresol was 62 mg. 81%; m.p. 106° (lit. 106°) The 2,4,6-trinitro-*m*-cresol was compared with an authentic sample prepared according to Birch *et al* ¹⁶ The IR and UV spectra and *R_f*-values, in two different solvents, were identical.

Bromopicrm-cleavage of ring C. Baryta (50 ml containing 5 6% Ba(OH)₂ and 10% of BaCl₂) was chilled to 0° under N₂ and Br₂ (0·32 ml) added. In this solution, 2,4,6-trinitro-m-cresol (50 mg) was suspended and the mixture stirred for 1 hr. H₂O (15 ml) was added and the bromopicrin separated by steam-distillation, and washed with dil. HCl and H₂O. An IR spectrum showed the absence of impurities.¹⁷ The bromopicrin was combusted¹⁸ giving BaCO₃ (yield 24 3 mg, 20%) representing C-atoms 2,4 and 13 of chrysophanol. The BaCO₃ remaining in the original mixture was collected, washed (H₂O) and the CO₂ liberated with HClO₄ (10%) and retrapped in baryta. The BaCO₃ (yield 113 mg, 70%) represents C-atom 1,3,3′ and 14 of chrysophanol.

Melting points are uncorrected. Elementary analysis by Dr F. Pascher, Bonn, Germany. Counting of radioactivity. The radioactivity of the BaCO₃ was counted as reported previously.³

Acknowledgements—The author is grateful to Miss C. Kalteis and Mrs. M. Fuerbringer for excellent technical assistance. This work has been supported by a grant from the Bundesminister fuer wissenschaftliche Forschung.

- ¹³ E. LEISTNER and M. H. ZENK, Z. Naturforsch. 23b, 259 (1968).
- ¹⁴ S. GATENBECK, Acta. Chem. Scand. 12, 1985 (1958).
- ¹⁵ A. N MELDRUM and W. H. PERKIN, J. Chem. Soc. 95, 1889 (1909).
- ¹⁶ A J. BIRCH, R. A. MASSY-WESTROPP, and C. J. MOYE, Austral. J. Chem. 8, 539 (1955).
- ¹⁷ A J BIRCH, C. J. MOYE, R. W. RICKARDS, and Z. VANEK, J. Chem. Soc. 3586 (1962).
- ¹⁸ S. Aronoff, Techniques of Radiobiochemistry, p 44, The Iowa State College Press, Ames (1956).